

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18

17-06-2014 SBIR Phase 2 Final Report November 28, 2011 - June 30, 2014

Open, Cross Platform Chemistry Application Unifying Structure Manipulation, External
Tools, Databases and Visualization Phase 2

W912HZ-12-C-0005

Dr. Marcus D. Hanwell

Kitware, Inc.
28 Corporate Drive
Clifton Park, NY 12065

K000695

US Army Engineering Research & Development Center
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

ERDC

DISTRUBUTION STATEMENT A: Distribution is approved for public release; Distribution is unlimited

Report developed under SBIR contract for topic #A10-110. The overarching goal of this project is the creation of the leading computational
chemistry workbench, making the premier computational chemistry codes and databases easily accessible to chemistry practitioners. This
has been accomplished by creating an open, extensible application framework that puts computational tools, data, and domain-specific
knowledge at the fingertips of chemists. A data-centric approach to chemistry, storing data in a searchable database, empowers users to
efficiently collaborate, innovate, and push the frontiers of research forward.

As the power of our computational resources grows, computational chemists face a growing discrepancy between our ability to run
calculations/simulations and our ability to meaningfully store, search, retrieve and analyze data. As the sophistication of the computational
codes grow and access to powerful computational resources becomes more commonplace, there is an increasingly steep learning curve to
effectively using new computational tools and analyzing their output. Our objective is to make the lives of computational chemists easier by
making these tools accessible to a wider range of chemists.

SBIR report, computational chemistry, cheminformatics, HPC, quantum chemistry, cross platform, open source, visualization, analysis,
databases, molecular dynamics, analytics, chemistry.

U

U U U

UU
38

Dr. Marcus D. Hanwell

(518) 371-3971 ext. 520

1

Topic A10-110 Proposal A2-4714 Kitware, Inc.

Open, Cross Platform Chemistry
Application

Unifying Structure Manipulation, External Tools, Databases and
Visualization

Phase II SBIR Final Report for Topic A10-110
Proposal Number A2-4714

Principal Investigator
Dr. Marcus D. Hanwell

Kitware, Inc.
28 Corporate Drive

Clifton Park, NY 12065
http://www.kitware.com/

518-371-3971

30 May, 2014

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 2

Topic A10-110 Proposal A2-4714 Kitware, Inc.

Contents

1 Technical Objectives 4

2 Work Summary 4
2.1 Software Process and Project Dissemination 6
2.2 Software Repositories and Statistics . 8
2.3 Data Models and Communication Strategies 9
2.4 Avogadro 1.x . 12
2.5 Avogadro 2 Libraries . 13

2.5.1 Core and IO Libraries . 14
2.5.2 Molecule Classes . 15
2.5.3 Periodic Structures . 16
2.5.4 Rendering and Graphical Libraries 16
2.5.5 Client-Server and Interprocess Communication 19
2.5.6 Input Generators in Separate Processes 20
2.5.7 File Format Extensions in a Separate Process 21
2.5.8 OpenQube—Moved into Avogadro Libraries 21
2.5.9 Mouse Interaction Tools . 22
2.5.10 Scene Plugins . 23
2.5.11 Extension Plugins . 24
2.5.12 VTK Integration . 25

2.6 Avogadro 2 Application . 26
2.7 MongoChem . 28
2.8 MoleQueue . 32
2.9 VTK . 36

3 Conclusions 36

References 37

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 3

Topic A10-110 Proposal A2-4714 Kitware, Inc.

1 Technical Objectives

The overarching goal of this project is the creation of the leading computational chemistry
workbench, making the premier computational chemistry codes and databases easily acces-
sible to chemistry practitioners. This has been accomplished by creating an open, extensible
application framework that puts computational tools, data, and domain-specific knowledge
at the fingertips of chemists. A data-centric approach to chemistry, storing data in a search-
able database, empowers users to efficiently collaborate, innovate, and push the frontiers of
research forward.

As the power of our computational resources grows, computational chemists face a grow-
ing discrepancy between our ability to run calculations/simulations and our ability to mean-
ingfully store, search, retrieve and analyze data. As the sophistication of the computational
codes grow and access to powerful computational resources becomes more commonplace,
there is an increasingly steep learning curve to effectively using new computational tools and
analyzing their output. Our objective is to make the lives of computational chemists easier
by making these tools accessible to a wider range of chemists. The specific goals of the Phase
II project are outlined below, and summarized in Figure 1.

• Develop an extensible, plugin-based, flexible chemistry application and library

• Develop an application for easily using HPC resources from desktop applications

• Develop a specialized desktop database application for chemical information

• Develop chemistry-specific analysis and visualization techniques

• Develop a specialized file format capable of storing large data

• Develop a library for ingesting and calculating electronic structure

• Develop a “chemistry workbench” offering state-of-the-art tools to the community

Kitware has been very successful for more than a decade by building collaborative inno-
vation platforms that allow us to work with the best research groups in the world to leverage
their research and development. This framework positions us to be able to pursue fruitful
collaborations in chemistry and several other related areas.

2 Work Summary

This section summarizes the work done in the during the two-year Phase II SBIR project,
with discussion of progress made in achieving the overall goals of the project, as outlined in
the proposal referenced. This project involves three major areas of development (shown in
Figure 1), with several open source projects supporting the work (shown in Figure 2).

The projects shown in Figure 2 summarize those being developed or extended as part of
this project, with an indication of application domain and type. There are three user facing
graphical applications that are aimed at being used from the desktop to do research in the
broad area of computational chemistry: Avogadro 2, MongoChem, and MoleQueue. Each

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 4

Topic A10-110 Proposal A2-4714 Kitware, Inc.

Figure 1: Open Chemistry workflow, with Open Chemistry applications filling the roles
in green, and the flow of data indicated by arrows.

Figure 2: Open Chemistry projects grouped by basic dependency and application area.

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 5

Topic A10-110 Proposal A2-4714 Kitware, Inc.

of these applications is specialized to deal with distinct domains, but designed to be used in
unison with the other applications.

These projects build upon existing libraries where possible. They are written in C++,
make use of several cross-platform, open source libraries, such as Qt,[1] and CMake,[2, 3] in
order to build on many platforms. In addition to the more generic libraries and tools, several
specialized libraries are also being developed or extended in order to support the Open
Chemistry project. The VTK project[4–6] is one of the oldest C++ visualization libraries
still actively developed, and is one of Kitware’s core projects. It has been augmented with
additional chemical data structures and visualization types that complement the existing
visualization approaches in order to make it a more compelling choice for chemists. It
sits between the GUI/visualization libraries and the core/command line in where it can
be deployed and used—featuring both data pipeline, CPU or GPU rendering and parallel
techniques—for data analysis and reduction.

The AvogadroLibs components provide the majority of the chemistry-specific function-
ality necessary, such as standard descriptors, file formats, force fields, data structures, algo-
rithms, and post-processing calculations on computational chemistry output files. In addition
to new functionality developed in these libraries, the Open Babel[7, 8] and RDKit[9] libraries
can also be used; for example, in the generation of 2D chemical structure depiction in batch
mode and file format support/conversion.

2.1 Software Process and Project Dissemination

The Open Chemistry applications and libraries[10] are developed as independent projects
grouped under the Open Chemistry project, with a community site at openchemistry.org.
Many open source projects use a somewhat standard software process,[11] which has been
adopted in a slightly modified form for the Open Chemistry projects, as shown in Figure 3.

Several key resources have been put in place for the projects:

• Community website dedicated to Open Chemistry projects

• Git source code repositories (Kitware, mirrored to Github and Gitorious)

• Online code review tool (Gerrit)

• Online software quality dashboards (CDash)

• Community wiki pages (MediaWiki)

• Bug tracking and project management tools

• Mailing lists

The community website (Figure 4) acts as an entry point to the project, and gives a brief
introduction to the projects with links to specific resources. The projects use permissive,
non-reciprocal BSD licenses, and distributed version control (Git) in order to enable cus-
tomization of private branches and shared open branches. Git also offers the possibility of
mirroring in multiple locations, with full access to the history and private mirrors possible

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 6

Topic A10-110 Proposal A2-4714 Kitware, Inc.

Figure 3: The software process used for Open Chemistry projects.

within organizational units. This has been successfully used with customers requiring cus-
tomization that must remain private, while minimizing the maintenance/integration burden
associated with traditional centralized version control systems.

The Gerrit code review system,[12] developed by Google as an open source project for
the Android operating system, enables online review of code submissions from anyone while
retaining control of what code is accepted into the code base. This has been combined with
nightly software build testing on all three major platforms for merged code and testing of
proposed changes using CDash@Home[13] (an open source project developed at Kitware to
address the need for testing arbitrary branches automatically). This level of automation
gives Open Chemistry projects the ability to maintain high code quality, and reviewers are
free to focus on verification of code correctness while the automated systems assure that
portable code that works on all major platforms. This process is summarized in Figure 3.

The projects are in independent code repositories which are then included in an Open
Chemistry repository that is capable of building all of the projects, along with their major
dependencies, on the mainstream platforms (Linux, Windows and Mac). The Open Chem-
istry repository provides an easy entry point for new developers, and using CDash with
nightly testing provides binaries for Windows and Mac that are automatically generated
every night. These are available both on the dashboard and on a site set up to help users
find the appropriate binaries.

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 7

Topic A10-110 Proposal A2-4714 Kitware, Inc.

Figure 4: The Open Chemistry homepage at openchemistry.org

2.2 Software Repositories and Statistics

Figure 2 shows the high level overview of the projects developed as part of this SBIR project,
along with VTK which was extended. These artifacts can be accessed through the openchem-
istry.org website, shown in Figure 4 and are available for inspection by all under permissive
open source licenses. The Avogadro 1.x and VTK projects remain in software repositories
that were established before this project began, and both projects were enhanced as part of
this work. There are also minor contributions to various projects this work depends upon.

The vast majority of the development was focused on the Open Chemistry projects which
were placed in new software repositories. Some of the development statistics are summarized
below for the Open Chemistry umbrella project that contains all other projects, individual
statistics could also be extracted if desired. The Open Chemistry projects have:

• 2,678 commits (first recorded in March, 2011)

• 15 distinct contributors to the code

• 118,864 lines of code

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 8

Topic A10-110 Proposal A2-4714 Kitware, Inc.

It is interesting to look at the Avogadro 2 project, which is the largest part of the Open
Chemistry project (nearly 65% by lines of code developed). This is due to the Avogadro
Libraries repository that contains a lot of common code reused in the other applications.
Taking the libraries, application, and data repositories into account:

• 1,115 commits (first recorded in October, 2011)

• 13 distinct contributors to the code

• 76,687 lines of code

These projects will be described in more detail in the following sections, the above statis-
tics are intended only to provide some high-level numbers on the scale of the code developed,
and the number of developers contributing code. In addition to these numbers the projects
are leveraging code from major libraries such as VTK which has in excess of 1.47 million
lines of code, from over 200 contributors with its first commit recorded in January of 1994.

2.3 Data Models and Communication Strategies

Early on in the development of the project, the Javascript Object Notation (JSON) for-
mat[14] was settled upon for simple serialization/deserialization of data, and inter-process
communication. The JSON format is a simple industry standard being increasingly used in
places where formats such as XML were once used. It has the distinct advantage of being a
very simple format that be parsed easily, and has support in a diverse array of programming
languages from compiled languages such as C, C++ and Fortran through to Java, Python,
Perl, and JavaScript.

At its core, the JSON data structure consists of key/value pairs, objects, and arrays.
These concepts are universal to most programming languages, enabling a great deal of free-
dom in language choice for data exchange. There are several C++ JSON libraries available,
and two were chosen for use in the Open Chemistry project—JsonCpp which is a very small
MIT licensed library using only STL, and Qt 5’s JSON classes which were backported to Qt
4.8 to enable its use in Qt 4.8 and Qt 5 based projects. The Python language has native
support for JSON data structures using dictionaries, and JavaScript support is strong.

The MongoDB project[15] was chosen as a scalable NoSQL data store for the cheminfor-
matics components of this work. The MongoDB project uses a binary form of JSON called
BSON,[16] which follows many of the same principles as JSON, but stores data in raw binary
and has optimized the data structures to support fast reading and writing of documents.
This means that moving data from the backend data store to applications and over inter-
process communication channels is a simple process. Several libraries are also available with
native BSON support, such as C, C++, and Python. BSON has the distinct advantage of
IO speed and the ability to store raw binary data, such as PNG images, binary file fragments
etc. with binary data length encoded in the standard representation and support for most
basic types.

The use of JSON and BSON in these projects also prompted the development of a
JSON/BSON data model to represent chemical structures. This was developed to mirror
many of the structures already developed for the Chemical Markup Language, and transla-
tion between the two formats should be lossless. They are both extensible formats building

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 9

Topic A10-110 Proposal A2-4714 Kitware, Inc.

on widely-accepted industry standard data exchange formats. Neither is especially suited to
very large data, but can be coupled with a separate binary data store to give semantically
rich data documents that point to larger blobs of binary data when appropriate. An example
of a small structure in Chemical JSON:

{

"chemical json": 0,

"name": "Ethane",

"inchi": "1/C2H6/c1 -2/h1 -2H3",

"formula": "C 2 H 6",

"atoms": {

"elements": {

"number": [1, 6, 1, 1, 6, 1, 1, 1]

},

"coords": {

"3d": [1.185080 , -0.003838 , 0.987524 ,

0.751621 , -0.022441 , -0.020839 ,

1.166929 , 0.833015 , -0.569312 ,

1.115519 , -0.932892 , -0.514525 ,

-0.751587 , 0.022496 , 0.020891 ,

-1.166882 , -0.833372 , 0.568699 ,

-1.115691 , 0.932608 , 0.515082 ,

-1.184988 , 0.004424 , -0.987522]

}

},

"bonds": {

"connections": {

"index": [0, 1,

1, 2,

1, 3,

1, 4,

4, 5,

4, 6,

4, 7]

},

"order": [1, 1, 1, 1, 1, 1, 1]

},

"properties": {

"molecular mass": 30.0690 ,

"melting point": -172,

"boiling point": -88

}

}

The key names map well to the XML nodes in CML documents,[17] and this structure
can easily be stored directly in MongoDB as a document (or object within a document) or
passed between processes as JSON. Readers can check for the existence of known keys, and
JSON documents can be built up by various subroutines using a simple in-memory model.
This format maps well to BSON documents where each key/value has a type and length
field before the actual data, using arrays of floats, doubles, integers, etc. maximizes storage
efficiency, binary read speed and ability to skip 3d coordinates efficiently when properties
are the key of interest for example. The equivalent CML is shown below to aid comparison.

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 10

Topic A10-110 Proposal A2-4714 Kitware, Inc.

<?xml version="1.0" encoding="UTF -8"?>

<molecule xmlns="http://www.xml -cml.org/schema"

xmlns:cml="http: //www.xml -cml.org/dict/cml"

xmlns:units="http: //www.xml -cml.org/units/units"

xmlns:xsd="http: //www.w3c.org /2001/ XMLSchema"

xmlns:iupac="http: //www.iupac.org"

id="CS_ethane">

<formula concise=" C 2 H 6 "/>

<identifier convention="iupac:inchi" value="1/C2H6/c1 -2/h1 -2H3"/>

<name convention="IUPAC">Ethane </name>

<atomArray >

<atom id="a1" elementType="H" x3="1.185080" y3=" -0.003838" z3="

0.987524"/>

<atom id="a2" elementType="C" x3="0.751621" y3=" -0.022441" z3="

-0.020839"/>

<atom id="a3" elementType="H" x3="1.166929" y3="0.833015" z3="

-0.569312"/>

<atom id="a4" elementType="H" x3="1.115519" y3=" -0.932892" z3="

-0.514525"/>

<atom id="a5" elementType="C" x3=" -0.751587" y3="0.022496" z3="

0.020891"/>

<atom id="a6" elementType="H" x3=" -1.166882" y3=" -0.833372" z3="

0.568699"/>

<atom id="a7" elementType="H" x3=" -1.115691" y3="0.932608" z3="

0.515082"/>

<atom id="a8" elementType="H" x3=" -1.184988" y3="0.004424" z3="

-0.987522"/>

</atomArray >

<bondArray >

<bond atomRefs2="a1 a2" order="1"/>

<bond atomRefs2="a2 a3" order="1"/>

<bond atomRefs2="a2 a4" order="1"/>

<bond atomRefs2="a2 a5" order="1"/>

<bond atomRefs2="a5 a6" order="1"/>

<bond atomRefs2="a5 a7" order="1"/>

<bond atomRefs2="a5 a8" order="1"/>

</bondArray >

<propertyList >

<property dictRef="cml:molwt" title="Molecular weight">

<scalar dataType="xsd:double" dictRef="cml:molwt" units="units:g

">30.0690 </scalar >

</property >

<property dictRef="cml:monoisotopicwt" title="Monoisotopic weight"

>

<scalar dataType="xsd:double" dictRef="cml:monoisotopicwt" units

="units:g">30.0469502 </scalar >

</property >

<property dictRef="cml:mp" title="Melting point">

<scalar dataType="xsd:double" errorValue="1.0" dictRef="cml:mp"

units="units:celsius"> -172</scalar >

</property >

<property dictRef="cml:bp" title="Boiling point">

<scalar dataType="xsd:double" errorValue="1.0" dictRef="cml:bp"

units="units:celsius"> -88</scalar >

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 11

Topic A10-110 Proposal A2-4714 Kitware, Inc.

</property >

</propertyList >

</molecule >

2.4 Avogadro 1.x

The Avogadro 1.x project[18] was developed as a library and desktop application since its
inception. A paper was published in 2012 discussing the work that went into the project
leading up to the 1.0 release series,[19] providing a summary of the development effort. As
of this writing the paper has received 184 citations according to Google Scholar, and is the
third most viewed paper of all time in the Journal of cheminformatics with Figure 5 showing
the graphical abstract. After the paper was published the Avogadro 1.1.0 release was made,
which incorporated some of the early improvements developed during this SBIR project
(largely in Phase I, and early in Phase II). Development in Phase II of the project was split
between improvements to and stabilization of features in Avogadro 1.1, with the majority of
effort redirected to rewriting the core data structures and algorithms for Avogadro 2, which
moves from a GPLv2 only license to a more permissive 3-clause BSD license that allows for
much wider use in all sections of government, academia, industry, and education.

Figure 5: The graphical abstract for the Avogadro paper.

The Avogadro application is a user-facing application capable of loading, editing and
saving chemical structures and loading/analyzing output from many popular computational
chemistry codes. It is developed as an open source community project, with input from across
the industry in both research and education. In the latest release of the Avogadro project
(1.1.0) significant new features were added, such as support for directly reading GAMESS-US
log files among other new codes, automated calculation of all molecular orbital intensities in
the background to enable the rapid comparison of orbitals shapes/size, and improved support
for vibrational mode animations. A new crystallography extension was added, providing
significantly improved support for periodic structures. A crystal library was added to the
distribution, along with new builders such as a nanotube builder and chirality inversion.

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 12

Topic A10-110 Proposal A2-4714 Kitware, Inc.

2.5 Avogadro 2 Libraries

The Avogadro 1.1 branch continues to be developed, but development efforts moved to the
Avogadro 2 rewrite (along with porting code). All major contributors agreed to relicense
their contributions under the 3-clause BSD license, with a new set of libraries developed
to serve the next generation of chemical manipulation and visualization tools. In order to
serve everything from desktop applications to HPC client-server deployments, the libraries
have been developed using a much more modular pattern. In Avogadro 1 there was a single
Avogadro library, and an application that linked to it. Avogadro 2 features a number of
libraries for specific application areas. This is needed as heavy computation needs to take
place on HPC systems with no graphical environment, whereas the desktop applications
needs a range of custom rendering and graphical widgets in order to be user friendly and
easy-to-use.

Figure 6: The organization of the Avogadro 2 libraries (blue outlines), and some of their
dependencies.

Avogadro 2 is a complete rewrite of the libraries and applications from the ground up.
All of the core data structures, APIs, rendering algorithms, file handling, plugin architecture
and interaction were rethought and written for both scalability and streaming. This is most
apparent when looking at large systems in Avogadro 1.x and Avogadro 2—systems exceeding
a few thousand atoms in size were difficult to load and/or interact with previously, becoming
very apparent above ten thousand atom systems. Avogadro 2 has been demonstrated loading
and interacting with systems containing in excess of 2.8 million atoms, with frame rates
remaining interactive and load times reasonable. These represent some of the largest systems
most groups are interested in simulating using molecular dynamics at the current time, and
it is clear that it would be possible to look at even larger systems.

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 13

Topic A10-110 Proposal A2-4714 Kitware, Inc.

2.5.1 Core and IO Libraries

The load and interaction improvements have been achieved by building a core library that
has very few dependencies, avoiding any graphical operations. Data structures, core algo-
rithms, and common definitions are implemented here. A small, focused input/output library
extends the core library and adds basic file IO, with new dependencies on small JSON and
XML parsing libraries, and Boost in order to efficiently implement core file format support.
The HDF5 library is needed by the IO library; most other file formats will be translated to
these core formats using tools such as Open Babel, Chemkit, and RDKit. The file IO layer
is extensible, and manages registered format handlers implementing some project specific
formats such as Chemical JSON described earlier, as well as common chemical file formats
such as CML, XYZ, MDL, and the GROMACS .gro format. A snippet from the XYZ for-
mat shows how simple the read function is, where the format developer implements a simple
method taking the input stream and a molecule object as parameters, and populates the
molecule object.

bool XyzFormat ::read(std:: istream &inStream , Core:: Molecule &mol)

{

size_t numAtoms = 0;

if (!(inStream >> numAtoms)) {

appendError("Error parsing number of atoms.");

return false;

}

std:: string buffer;

std:: getline(inStream , buffer); / / F i n i s h t h e f i r s t l i n e

std:: getline(inStream , buffer);

if (! buffer.empty ())

mol.setData("name", trimmed(buffer));

/ / P a r s e a t o m s

unsigned char atomicNum;

Vector3 pos;

for (size_t i = 0; i < numAtoms; ++i) {

if (inStream >> buffer &&

inStream >> pos.x() &&

inStream >> pos.y() &&

inStream >> pos.z()) {

if (! buffer.empty()) {

if (isalpha(buffer [0])) {

atomicNum = Elements :: atomicNumberFromSymbol(buffer);

}

else {

short int atomicNumInt = 0;

std:: istringstream(buffer) >> atomicNumInt;

atomicNum = static_cast <unsigned char >(atomicNumInt);

}

Atom newAtom = mol.addAtom(atomicNum);

newAtom.setPosition3d(pos);

continue;

}

}

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 14

Topic A10-110 Proposal A2-4714 Kitware, Inc.

break;

}

/ / C h e c k t h a t a l l a t o m s w e r e h a n d l e d .

if (mol.atomCount () != numAtoms) {

std:: ostringstream errorStream;

errorStream << "Error parsing atom at index " << mol.atomCount ()

<< " (line " << 3 + mol.atomCount () << ").";

appendError(errorStream.str());

return false;

}

return true;

}

A fast and lightweight CML reader and writer has been developed using the PugiXML
library for XML parsing, and the HDF5 library for storing large amounts of data in a binary
format. Significant improvements in load time and memory utilization have been achieved
over previous implementations, along with simpler code that can be more easily extended
in the future as more features are required. The CML and HDF5 reader/writer has been
developed as part of this project, and discussed with experts in the field as an approach
to creating standards-compliant and scalable formats for use in chemistry. Converters from
other formats are also being developed using two approaches: the extension of Open Babel
which already supports a vast array of formats, and the development of JUMBO converters
in collaboration with others in the field directly to CML.

2.5.2 Molecule Classes

Previously the molecule class of Avogadro was deeply entwined with that of Open Babel,
and one class was used for everything. In Avogadro 2 after a great deal of thought three
molecule classes were created. The core Avogadro library houses the first, which implements
a Core::Molecule class. A flyweight proxy pattern was employed for the molecule’s atoms
and bonds, in stark contrast to previously used approaches. Atoms and bonds are temporary
objects, containing only a pointer to their parent molecule and their index—along with all
expected API. The molecule has a series of data arrays that contain the atom’s atomic
number, position, etc. Properties that are not used remain as zero-length arrays in the
molecule, and are only allocated when values are set.

The molecules leverage a copy-on-write pattern for heavy data storage, whereby a copy
of a molecule will create a copy of all arrays in the old molecule in the new one. The arrays
increment the reference count of the inner data, but do not make a copy of the memory
unless a non-const method is called. In this way very cheap copies of large molecules can
be created, and temporary molecules are able to effectively pass along their underlying data
without creating multiple, redundant, in-memory copies of heavy data. This also makes
file input/output much more efficient as iterating through all stored position coordinates is
a simple traversal of a linear array, allocating these buffers for a known input can involve
just one initial memory allocation reducing memory fragmentation. The code listing below
demonstrates how simple it is to create a molecule, and work with the proxy atom/bond
objects in the molecule classes.

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 15

Topic A10-110 Proposal A2-4714 Kitware, Inc.

Avogadro ::Core:: Molecule mol;

Avogadro ::Core::Atom o1 = mol.addAtom (8);

Avogadro ::Core::Atom h2 = mol.addAtom (1);

Avogadro ::Core::Atom h3 = mol.addAtom (1);

o1.setPosition3d(Vector3(0, 0, 0));

h2.setPosition3d(Vector3 (0.6, -0.5, 0));

h3.setPosition3d(Vector3 (-0.6, -0.5, 0));

Avogadro ::Core::Bond b1 = mol.addBond(o1, h2, 1);

Avogadro ::Core::Bond b2 = mol.addBond(o1, h3, 1);

The QtGui::Molecule class inherits from Core::Molecule and Qt’s QObject so that it can
participate in the Qt framework. It adds signals and slots, as well as the simple parenting
offered by the Qt framework for object lifetime management. This is the object used primar-
ily by the Avogadro 2 application; it is passed to the file formats which take the molecule to
be populated as an input (although they are all implemented in terms of the Core::Molecule
class.

The third is QtGui::RWMolecule which inherits from just QObject, but shares a common
API with the other two classes. The QtGui::Molecule class and QtGui::RWMolecule classes
offer fast conversion from one to the other, and the “editable” molecule is highly specialized
for molecular editing. It only supports atoms, bonds, and limited metadata, leaving more
advanced objects such as quantum data, cubes, meshes etc. to the other classes. It builds
and maintains an internal undo/redo stack, removing the burden from the mouse interaction
tools to implement undo/redo operations. It uses the same array classes that offer copy-
on-write functionality, meaning that conversion to QtGui::Molecule copies very little data
unless further changes are made to the editable molecule.

The molecule classes are also supported by support classes that provide atomic data,
such as atomic radii, default colors, etc. These functions are significantly faster due to their
use of linear arrays indexed by atomic number, further increasing efficiency when working
with large structures.

2.5.3 Periodic Structures

Support for periodic systems was implemented, with options to display and edit the unit
cell, as well as perform numerous operations on the cell. These concepts were added as
optional properties on molecules, and several of the native file formats include full support
for expressing periodic structure. Figure 14 shows a large structure from a GROMACS
simulation with the unit cell for the periodic boundaries displayed.

2.5.4 Rendering and Graphical Libraries

The rendering data structures, support classes, and code reside in a rendering library that
depends upon OpenGL and GLEW, but remains independent of the graphical user interface
toolkit employed. This opens up the possibility of deploying the rendering code in a wider
variety of environments, but requires integration with Qt in order to open up windows, handle
user interaction, and perform other common tasks. This is implemented in a Qt OpenGL
library that provides customized OpenGL render windows and related functionality. Finally,

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 16

Topic A10-110 Proposal A2-4714 Kitware, Inc.

the desktop widgets necessary for user interaction without OpenGL is in a Qt GUI library, to
enable reuse in non-OpenGL applications. Plugin location, loading, and lifetime management
are also implemented in the Qt GUI library.

Significant advances in the rendering model have focused on leveraging OpenGL 2.1 in
order to maximize performance with good hardware support. Major advantages include
vertex buffer objects, vertex and fragment shader programs, and optimized memory layouts
for rendering. One of the largest bottlenecks in the rendering pipeline in chemical structures
is sphere rendering, which has been significantly mitigated through the use of impostor
sphere rendering. This approach uses a point sprite or single quad to represent a sphere, the
vertex program applies a billboarding transform to ensure the quad faces the camera and
has the correct dimensions in eye space. The fragment shader then applies lighting equations
and an implicit function to update the depth buffer with the correct values to interact with
standard rendering techniques. This leads to a highly optimized rendering scene where only
four points per sphere need to be transformed; and sphere ray-tracing equations can be
applied on a per pixel basis, offering not only much improved rendering speed, but pixel
perfect sphere boundaries due to the use of an implicit sphere rather than some approximate
triangulation method as is traditionally used. The results can be seen in Figure 7.

Figure 7: Van der Waals rendering using impostor sphere rendering.

Ideally a similar approach would be used for cylinders, but the gains are lower (cylinders
are more complex to model in this way and require fewer triangles than spheres). Figure 8
shows a typical ball and stick representation, and the seamless joins achieved between the
ray-traced spheres and the triangulated cylinders. Through the use of optimized data struc-
tures and vastly improved rendering techniques structures containing hundreds of thousands
of atoms can now be rendered interactively on commodity laptops when in Avogadro 1.x
thousands of atoms would already be displaying performance degradation.

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 17

Topic A10-110 Proposal A2-4714 Kitware, Inc.

Figure 8: Ball and stick rendering using impostor spheres and triangulated cylinders,
saved directly to PNG from the application.

The improvements in low level rendering capabilities using OpenGL 2.1, and modern
shader language approaches are further augmented through the use of a custom scene graph
implementation. The scene graph is becoming increasingly accepted as the best pattern
to take maximum advantage of modern graphics cards, and is commonly used in many
rendering engines from the latest blockbuster video games through to rendering engines for
movies and cartoons to real-time ray tracing engines. This adds a significant amount of
API and infrastructure to the rendering code in Avogadro 2, but pays off with a simple
user-facing API coupled with extremely efficient batching of rendering.

In a typical scene any given view might use spheres, cylinders, triangle meshes, and
text. Using the traditional immediate mode techniques these graphical primitives would
be rendered in the order they were encountered, but with a scene graph multiple passes
are used. The first pass involved going from the molecular model to the graphical model,
which is where view plugins transform atoms, bonds, surfaces, etc. into spheres, cylinders,
triangle meshes, etc. This can now be pushed off into background threads as they are simply
building in-memory representations of the molecule ready for the rendering pass. On the first
rendering pass the scene graph drawable items translate the graphical primitives into vertex
buffer objects (VBOs) that are uploaded to fast GPU memory, along with the appropriate
uniforms and shader programs necessary to render.

Once the geometry has been uploaded to GPU-resident memory the actual render calls
act in large batched operations—draw all spheres, draw all cylinders, draw all meshes, etc.
These calls apply the shader code to the geometry in memory, and when the camera is
changed to look at the structure from a different angle or zoom level the camera matrix is
updated but all other state remains unaffected, meaning that virtually no data needs to be
uploaded to the graphics card for the next frame. This coupled with the orders of magnitude
decrease in vertex counts for spheres has enabled rendering to go from thousands of spheres
in Avogadro 1.x to millions of spheres in Avogadro 2. The significantly improved core
molecule data structure (with all 3D coordinates being in contiguous memory for example)

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 18

Topic A10-110 Proposal A2-4714 Kitware, Inc.

also enables for significantly improved initial render times.

2.5.5 Client-Server and Interprocess Communication

In addition to lower level changes to data structures, rendering and plugins, a scalable, client-
server oriented architecture has been developed, yielding fast serialization/deserialization of
data and simple migration of objects from one process to another (whether local or remote).
This architecture is exposed as a generic library that leverages Google’s protobuf project
for fast, binary communication, with specialized helper classes in Avogadro 2 libraries to
make transfers of common data structures simpler. There is a runtime loaded plugin that
exposes this in the application, and facilities for remote file browsing with all communication
happening over a standard TCP/IP connection. The first screen capture of this is shown in
Figure 9.

Figure 9: The Avogadro 2 application displaying a molecule loaded on a remote system
using the client-server functionality.

Integration with MoleQueue and MongoChem offers seamless communication of molec-
ular data between components, opening selected results from MongoChem in Avogadro 2,
or new calculations performed by MoleQueue automatically in Avogadro 2 once they are
finished. The original code was developed in the MoleQueue project (described later), and

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 19

Topic A10-110 Proposal A2-4714 Kitware, Inc.

generalized so that all three applications could easily set up local socket connections and lis-
ten for JSON-RPC 2.0 calls. The code implementing the calls is simple, and can be extended
with minimal effort to support new interactions as desired.

2.5.6 Input Generators in Separate Processes

In addition to the previous approach taken to adding new input generators using C++,
development of a new methodology has also been developed. Instead of writing a plugin
in C++ or Python using the wrapped API of Avogadro, calling a script directly from the
Avogadro application in a separate process is now possible.

This suffers from a higher startup cost, but benefits greatly from the level of simplicity
in designing, adding and editing input generators. All molecular geometry and calculation
settings can be passed in using a JSON input to the Python (or any other language) process,
and the generated output can be passed back to the application using the standard output of
the process. Most languages have support for JSON, and can parse it very efficiently. Calling
an independent process removes any issues around consistent linking of the plugin, licensing
issues and complexity of learning a new API. This approach can be used in combination
with the previous approach, with some input file generators being C++ plugins, and others
being implemented in these independent scripts. Should the plugin crash or be unreliable
it will not crash the main application process, and the user can be informed of the issue.
Examples of C++ and Python input generators are shown in Figure 10—both feature syntax
highlighting.

Figure 10: The GAMESS input generator (left) implemented in C++, and NWChem
(right) implemented in Python.

This also opens up the possibility of much simpler packaging, sharing and independent
releases of input generator plugins. They can be downloaded and placed in an appropriate
location. Avogadro 2 takes care of calling them using several entry points asking for the menu
entry to be added to the application, supported options and desired molecular geometry
format. The plugins can also return syntax highlighting rules, which are then loaded by the

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 20

Topic A10-110 Proposal A2-4714 Kitware, Inc.

input generator and shown in real time when the user hand edits the input file. Concerns
over how well this might scale to larger structures have also been mitigated by providing
a geometry specification syntax, where the plugin can specify how the molecular geometry
should be passed and offering a known keyword for later replacement. The framework also
supports the generation of multiple input files.

2.5.7 File Format Extensions in a Separate Process

Early on in Avogadro 2’s development there was a strong desire to maintain support for
the large number of file formats supported by Open Babel without linking to the Open
Babel library due to licensing and program stability concerns. This led to the design of
a meta-format plugin that queried the obabel command line executable for all supported
formats, added them to the Avogadro 2 formats, and integrated them into the applications
IO routines. This was achieved, and found to work well using obabel to convert to CML,
XYZ, or MDL as appropriate making a call in a separate process to obabel for each file to
be opened or saved.

This approach was then extended, following a similar pattern to the input generators
in a separate process described above. There are a set of known entry points that must be
implemented, informing the application if the format can read, write, or both, along with the
requested format for writing or the format the application should expect for reading. The
files are then passed to the plugin as requested, which is expected to perform the translation
to/from the format it implements. This again enables the simple extension of the application
using Python scripts (or any other language), and new formats can be seamlessly added to the
application. From the end user’s perspective these plugins are indistinguishable from native
file formats and/or input generators, though it should be noted they suffer from the inherent
overhead of starting a distinct process for each call, and use the standard input/output
streams to avoid complications with temporary files.

2.5.8 OpenQube—Moved into Avogadro Libraries

The OpenQube project began as part of an Avogadro plugin, and was later split out in order
to make it more useful in other applications. It originally contained a minimal molecule data
structure, which has since been ported to reuse the structure implemented in Avogadro::Core
and moved to a library in the Avogadro 2 libraries repository—Avogadro::Quantum. Sup-
port for a variety of output file formats, such as GAMESS, GAMESS-UK, MOPAC, and
Molden have been added. Experimental support for CMLComp is also being developed,
with a collaboration between NWChem, Open Chemistry, and community members explor-
ing augmenting NWChem and Avogadro 2 with CMLComp support, and developing new
converters to go from log file formats to the CMLComp format. The CMLComp conven-
tion is being developed in a larger collaboration, with XML dictionaries being developed to
extend CML for use in computational chemistry.

Further generalization of OpenQube also took place, in order to develop a more widely-
applicable and efficient data structure where basis sets can be shared between multiple
atoms, support for UHF as well as RHF and higher order Gaussian type orbital functions.
The OpenQube code had a hard dependency on Qt for the QtConcurrent parallelization

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 21

Topic A10-110 Proposal A2-4714 Kitware, Inc.

framework, this was removed with a simple serial implementation in the core library and
the parallel QtConcurrent based approach moved to an Avogadro 2 plugin. This adds the
possibility of client-server molecular orbital and electron density calculations, which are well
suited to this approach due to the highly CPU bound nature of the calculations.

2.5.9 Mouse Interaction Tools

Due to the creation of multiple molecule classes the complexity of the tools plugins increased
a little, but this was offset by the centralization of the undo/redo management. Several tools
were ported from Avogadro 1.x, although these largely became rewrites due to significant
changes to the core APIs, and simplifications that became more obvious when reexamining
previous approaches.

Figure 11: The bond-centric tool, rewritten but retaining most functionality from Avo-
gadro 1.x.

Figure 11 shows the bond-centric tool. The edit tool features an improved periodic
table widget that can be resized dynamically. Edit widgets are only enabled if the editable
molecule has been used, the general tools are designed to work with both structures. Support
for playing molecular trajectories was also added as a tool in order to enable fuller interaction,
and support for large trajectory files has been demonstrated.

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 22

Topic A10-110 Proposal A2-4714 Kitware, Inc.

2.5.10 Scene Plugins

All 3D views of the molecular structure are transformed from input data to objects that can
be rendered in the scene graph using scene plugins. These classes have a number of entry
points, but the main ones are the process methods that take the molecule to be rendered,
and a node in the scene. They populate the node with graphical primitives to be rendered,
as shown in the listing below taken from the ball and stick plugin.

void BallAndStick :: process(const Molecule &molecule ,

Rendering :: GroupNode &node)

{

GeometryNode *geometry = new GeometryNode;

node.addChild(geometry);

/ / A d d a s p h e r e g e o m e t r y d r a w a b l e t o c o n t a i n a l l o f t h e s p h e r e s .

SphereGeometry *spheres = new SphereGeometry;

spheres ->identifier ().molecule = &molecule;

spheres ->identifier ().type = Rendering :: AtomType;

geometry ->addDrawable(spheres);

for (Index i = 0; i < molecule.atomCount (); ++i) {

Core::Atom atom = molecule.atom(i);

unsigned char atomicNumber = atom.atomicNumber ();

if (atomicNumber == 1 && !m_showHydrogens)

continue;

const unsigned char *c = Elements ::color(atomicNumber);

Vector3ub color(c[0], c[1], c[2]);

spheres ->addSphere(atom.position3d ().cast <float >(), color ,

static_cast <float >(Elements :: radiusVDW(

atomicNumber))

* 0.3f);

}

float bondRadius = 0.1f;

/ / A d d a c y l i n d e r g e o m e t r y d r a w a b l e t o c o n t a i n a l l o f t h e c y l i n d e r s .

CylinderGeometry *cylinders = new CylinderGeometry;

cylinders ->identifier ().molecule = &molecule;

cylinders ->identifier ().type = Rendering :: BondType;

geometry ->addDrawable(cylinders);

for (Index i = 0; i < molecule.bondCount (); ++i) {

Core::Bond bond = molecule.bond(i);

if (! m_showHydrogens

&& (bond.atom1().atomicNumber () == 1 || bond.atom2().

atomicNumber () == 1)) {

continue;

}

Vector3f pos1 = bond.atom1 ().position3d ().cast <float >();

Vector3f pos2 = bond.atom2 ().position3d ().cast <float >();

Vector3ub color1(Elements :: color(bond.atom1 ().atomicNumber ()));

Vector3ub color2(Elements :: color(bond.atom2 ().atomicNumber ()));

Vector3f bondVector = pos2 - pos1;

float bondLength = bondVector.norm();

bondVector /= bondLength;

switch (m_multiBonds ? bond.order() : 1) {

case 3: {

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 23

Topic A10-110 Proposal A2-4714 Kitware, Inc.

Vector3f delta = bondVector.unitOrthogonal () * (2.0f *

bondRadius);

cylinders ->addCylinder(pos1 + delta , bondVector , bondLength ,

bondRadius ,

color1 , color2 , i);

cylinders ->addCylinder(pos1 - delta , bondVector , bondLength ,

bondRadius ,

color1 , color2 , i);

}

default:

case 1:

cylinders ->addCylinder(pos1 , bondVector , bondLength , bondRadius ,

color1 , color2 , i);

break;

case 2: {

Vector3f delta = bondVector.unitOrthogonal () * bondRadius;

cylinders ->addCylinder(pos1 + delta , bondVector , bondLength ,

bondRadius ,

color1 , color2 , i);

cylinders ->addCylinder(pos1 - delta , bondVector , bondLength ,

bondRadius ,

color1 , color2 , i);

}

}

}

}

This listing demonstrates how simple the scene API remains, enabling developers of scene
plugins to focus on the geometry rather than worrying about OpenGL, global state, batching
of draw calls, selection, etc. Settings such as whether to show hydrogen atoms are shown,
and configured from the plugins configuration dialog (shown in the application). The full
source of the display plugins shows more of the detail, but the above should be enough to
demonstrate how simple it is to add new visualizations to Avogadro 2. This approach has
been used to process millions of atoms, add them to the scene and render them interactively
on consumer-grade laptops running Linux, Mac OS X and Windows.

2.5.11 Extension Plugins

Extensions that are primarily commands executed from the application menus, or additional
file formats, utility functionality, etc, were implemented in the extension plugin framework.
These extensions can add entries to the menu, which are dynamically created when the ap-
plication is loaded. They may open dialogs, such as the input generator plugins, calculate
new derived quantities, such as the quantum plugins, or add support for new file types, such
as the Open Babel plugin and Python IO plugin. Operations on the molecule model, such as
bonding, hydrogen addition/removal, and geometry optimization are also possible. Integra-
tion with online databases, downloading structures by name and finding similar molecules
to the currently shown molecule were all implemented as simple extension plugins that are
loaded dynamically. These could easily be extended, or modified to use different data sources,
or extend the queries made.

The QTAIM plugin is perhaps the one that contains the largest amount of code at this

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 24

Topic A10-110 Proposal A2-4714 Kitware, Inc.

Figure 12: The Avogadro 2 rendering of a wave function file showing QTAIM results.

stage. It was ported from the code contributed to Avogadro 1.x, and could probably be
significantly optimized. The basic of the code work, and it is now more fully integrated than
was ever before possible. There are also some small pieces of mathematical code, limited
to the plugin, that are GPL-licensed, this causes the plugin to be GPL-licensed too due to
the copyleft licensing terms at this stage. An example rendering is shown in Figure 12, this
component was used in a recent course at the University College London (UCL).

2.5.12 VTK Integration

The Visualization Toolkit (VTK) offers significant visualization and analysis capabilities.
One of the primary motivating factors for supporting multiple view widget types was to
add a VTK widget to the main application. This has made it possible to offer side-by-side
comparisons of electronic structure using simple isosurfaces and volume rendered geometry.
In order to offer seamless integration a vtkAvogadroActor class was developed, taking the
scene graph based rendering used in the main Avogadro 2 views, and placing them in the
rendered 3D view alongside native VTK visualization. This gives a visually appealing so-

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 25

Topic A10-110 Proposal A2-4714 Kitware, Inc.

lution where the ball and stick rendering is completely identical, with a volume rendering
overlaid and the same scene plugins can be reused with no code modifications. Figure 13
shows this capability in the two widgets rendered on the left of the application.

2.6 Avogadro 2 Application

The Avogadro 2 application has also seen quite significant changes, largely due to the sig-
nificant changes in the Avogadro 2 libraries. The application remains focused on providing
an end-user application, ready for use by non-programmers. It makes use of the file format
framework, and moves all file loading/saving to background threads. The program supports
several command line options, and now offers an RPC server that responds to JSON-RPC
2.0 calls listening on a local names socket.

The application has been ported to use the latest generation of the Qt libraries, with
significant changes to the core model to support multiple molecules in a single window, as
well as multiple view widgets/widget types, as shown in Figure 13. These changes make it
possible to dynamically add a range of display types, seamlessly mixing native Avogadro 2
display widgets with VTK widgets. In the future this framework could easily support yet
more widget types, including web-based views seamlessly integrating dynamic web content
with the natively rendered views.

Figure 13: The Avogadro 2 application shown displaying different rendering styles of
different molecule views.

The application is in a separate repository, ensuring complete independence from the li-
braries, and acting as a living example of how a custom application can be developed based on
the Avogadro 2 libraries. This acts as one of the most complete custom applications, offering
the most options along with automated packaging/integration capabilities. The application

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 26

Topic A10-110 Proposal A2-4714 Kitware, Inc.

features integration with MoleQueue, MongoChem and some online chemical databases. The
editable molecule widget uses the editable molecule that features native undo/redo support.
This application serves as the full-featured demonstration of capabilities in the libraries de-
veloped. It can be installed alongside Avogadro 1.x, and while its capabilities exceed those
of Avogadro 1.x in many areas, there are still features that have yet to be ported. It has a
similar yet distinct icon to highlight the heritage of the project, but the distinct differences
present in this rewrite that Avogadro 2 was developed as part of the Phase II SBIR project.

The application has been demonstrated editing new structures, minimizing the structure,
generating input for a number of codes, submitting them using MoleQueue, and visualizing
the electronic structure of the output. It has also been shown loading structures in excess
of 2.8 million atoms on a standard laptop, rendering it interactively, and even showing
multiple large and small structures side-by-side. The large structure is shown in Figure 14.
Trajectories from molecular dynamics calculations can be loaded, and animated in the main
interface. Support for periodic structures is also present, along with client-server capabilities
that enable interaction with large data on remote systems using a server-resident process.

Figure 14: The Avogadro 2 application displaying a GROMACS structure, kindly shared
by Peter Tieleman, with over 2.8 million atoms.

This application represents a significant step forward in capabilities, positioned to make
a significant impact on the field. It is easily extensible with modest levels of expertise, and
can handle very large and very small structures equally well. The layout of the libraries,
plugin interfaces and licensing make it especially amenable to use in various DoD projects
where custom functionality can be implemented for specialized application areas.

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 27

Topic A10-110 Proposal A2-4714 Kitware, Inc.

2.7 MongoChem

The MongoChem application is developed using C++, Qt, MongoDB, VTK, and the Avo-
gadro 2 libraries. Some of its cheminformatics functionality coming from Open Babel and
Chemkit. This application is focused on facilitating the deposition of chemical data in a
scalable database, adding various properties to the molecules, and facilitating the dynamic
visualization and analysis of aggregate data. It has been generalized to support connections
to different MongoDB database servers, including the use of shared servers, in the cases
where very large databases are required.

Figure 15: The scatter plot matrix view showing multiple .

The range of charts available has been extended to include simple histograms and scat-
ter plots, through to multivariate visualization techniques such as parallel coordinates and
scatter plot matrices (which combine scatter plots for multiple dimensions, along with pop-
ulation histograms for each variable and linked selections, shown in Figure 15). The charts
make use of VTK’s selection linking functionality that enables users to make and visualize
subsets of the data in many different views and representations, as shown in Figure 16.

The use of molecule fingerprinting techniques gives the database the ability to be searched
by similarity to a desired structure, as well as enabling queries on chemical name, tag,
and other properties. These results can then be viewed in the different data display views
available in order further inspect the selected subset of data or do further calculations/export.
This enables integration of independently developed software, such as that used to generate
QSAR data, into the framework while enabling scientists to make use of the analytical

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 28

Topic A10-110 Proposal A2-4714 Kitware, Inc.

Figure 16: Linked selection in several charts and the table view in MongoChem.

capabilities of the application.
Many of the charts in the application feature intelligent tooltips that display the 2D

structure along with the IUPAC name, as shown in Figure 17. Network connectivity views
based both on fingerprint and structural similarity enable users to view the overall relatedness
of compounds in the database. The K-means clustering view displays descriptor values using
3D charts and groups them based on similarity (see Figure 18); the view features interaction
(panning, zooming, etc), and the clustering parameters can be modified.

Large data sets can be imported using simple Python scripts, or with graphical tools such
as the CSV importer in the application. In addition to the desktop functionality, a prototype
web application has been developed which shows the data from the same MongoDB store
using modern web techniques coupled with the Python-based server-side frameworks and
VTKWeb framework to give any user read-only access to the data, and the ability to visualize
basic 2D and 3D structure (with interaction for the 3D visualization).

In addition to the charts and table view a detailed dialog is available once a single
molecule has been selected, as shown in Figure 19; this gives further details on the structure,
such as InChI and SMILES strings. The detailed table views enable the export of structures,
or to directly open the structure in Avogadro. Structures can have multiple tags that are
searchable, and annotations can be saved with notes relevant to the structure.

A collaboration with the Aspuru-Guzik group at Harvard University has also made avail-
able a large number of electronic structure calculations. The data set is about 0.5 PB in size,
and an initial 4 TB sample has been duplicated for testing and performance benchmarking.
The data set is interesting for the MongoChem application as it includes a large number of

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 29

Topic A10-110 Proposal A2-4714 Kitware, Inc.

Figure 17: Custom tooltips in scatter plots displaying the 2D structure and IUPAC name
of the point under the cursor.

Figure 18: K-means clustering view in MongoChem.

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 30

Topic A10-110 Proposal A2-4714 Kitware, Inc.

Figure 19: The detailed dialog in MongoChem for a molecular structure.

small molecule structures that are candidates for organic solar cell materials,[20] with multiple
calculations per structure using different levels of theory and calculation types. A modified
version of Q-Chem was used to perform the calculations on the World Community Grid.[21]

There is a live demo available at data.openchemistry.org that contains a snapshot of
the Clean Energy Project’s data, showing a customized web view, searchable database,
and capability to both display and download 3D structures. The client code is largely
JavaScript/HTML5, using simple RESTful APIs to retrieve data—these same APIs could
be used by desktop applications. The data available on the site can also be displayed and
edited in the desktop MongoChem application.

Figure 20 shows a capture of the card view offered by the site, summarizing some of
the calculation details. Clicking on any card opens up a detailed view, which also has an
interactive 3D view of the structure. The web demo uses an in-memory fingerprint database
in order to accelerate similarity and substructure searches, which remain one of the most
important queries that are quite poorly supported by the underlying MongoDB database
server technology.

During the course of development it became clear that the MongoDB C++ client li-
braries do not offer a stable API, and the MongoDB facilities need to be augmented with
more capabilities on the server-side such as the in-memory structure search capabilities. A
more complete solution would implement simple authentication, access control, and acceler-
ation capabilities on the server-side with a thin interface through to MongoDB. This would
make the offering more flexible and extensible, but would require more investment in order
to fully realize. The solution developed remains viable, even for collections of millions of

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 31

Topic A10-110 Proposal A2-4714 Kitware, Inc.

Figure 20: The MongoChemWeb live demo showing data from the Clean Energy Project.

molecules, but has some bottlenecks in search capabilities and could only be deployed on
trusted networks at this stage (with an Internet facing web component optionally, such as
that prototyped).

The application features integration with MoleQueue, where subsets can use the input
generator framework from Avogadro 2 and submit computational jobs. It also features inte-
gration with Avogadro 2, offering the capability to open structures in the running Avogadro
2, and show similar structures in its database when initiated from Avogadro 2. These local
RPC calls leverage the framework developed in MoleQueue, and more calls can easily be
added in future. The application makes use of Avogadro 2 rendering widgets, file formats,
input gecommitnerators, with scope to increase the level of interaction in future versions.

2.8 MoleQueue

The MoleQueue application is a C++ Qt application developed to provide an abstraction to
local and remote computational resources. Its functionality is not chemistry-specific, but it is
necessary in order to remove many of the barriers encountered by users attempting to make
use of computational chemistry applications on both the desktop and remote computational
resources.

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 32

Topic A10-110 Proposal A2-4714 Kitware, Inc.

The project provides two components: a system-tray resident application where remote
and local computational resources are configured to act as a local job dispatch server, and a
client that uses a remote procedure call (RPC) API to stage and submit computational jobs.
The RPC API uses a data structure called JSON (JavaScript Object Notation) to carry data
in a language and architecture independent fashion. This format was chosen due to the vast
array of implementations in virtually every programming language. The JSON RPC 2.0
specification builds upon the JSON data format in order to provide a cross-platform, device-
independent RPC API that can easily be implemented in any language desired. Finally, the
local socket transport has been chosen due to the security considerations that require local
sockets to follow the same permission model as files on every operating system supported
- only users with access to the users files on the local system can access a local socket to
submit jobs.

It is possible to add further transports, but the communication protocol will remain very
simple and easy to implement. A C++ Qt client library is provided, along with some refer-
ence implementations for submitting jobs using the Python language. The JSON-RPC 2.0
specification consists of a protocol identifier string-value pair, request, response, notification,
and error messages. Requests consist of a JSON-RPC message that contains a method key
with a corresponding method name and a params object that contains any method call pa-
rameters necessary to complete the request. The client will receive a reply or an error with
an id matching that of the request.

Some simple examples, such as requesting a list of queues and their programs is as simple
as:

{

"jsonrpc": "2.0",

"method": "listQueues",

"id": 42

}

The response to this request might look something like this:

{

"jsonrpc": "2.0",

"result": {

"Diamond": [

"GAMESS",

"MOPAC",

"Gaussian",

"NWChem"

],

"Garnet": [

"GAMESS",

"MOPAC",

"Gaussian",

"NWChem"

],

"Local": [

"GAMESS",

"MOPAC",

"Gaussian",

"NWChem"

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 33

Topic A10-110 Proposal A2-4714 Kitware, Inc.

]

},

"id": 42

}

A slightly more complex RPC call to submit a job using MoleQueue would look as follows:

{

"jsonrpc": "2.0",

"method": "submitJob",

"params": {

"queue": "Garnet",

"program": "GAMESS",

"description": "B3LYP H2O optimization",

"inputFile": {

"filename": "job.inp",

"contents": "Full contents of input file.\nWill be created in

the working tree."

}

},

"id": 23

}

This submits a job to the remote queue named “Garnet,” with the program named “GAMESS”.
The description is the string that will show up in the MoleQueue user interface, and the in-
put file is specified by either a full path or a file name and contents string. The response for
a successful submission looks something like the following:

{

"jsonrpc": "2.0",

"result": {

"moleQueueId": 17,

"workingDirectory": "/tmp/MoleQueue /17/"

},

"id": 23

}

This response object gives a long-lived identifier for the job, “moleQueueId,” along with the
working directory where all files will be staged. If there was an error then an error response
will be generated (with an “id” matching that of the request) and an appropriate error, such
as queue or program does not exist. Once a job is submitted, notifications are sent when the
job state changes; for example, from submitted to running, error, completed etc. Each of the
notifications carries the moleQueueId, along with the notification of the job-state change.
It is then possible to act upon these changes. There are also RPC methods to query jobs,
which can give access to remote job identifiers or to cancel an already submitted job.

The MoleQueue application runs in the system tray, and provides a graphical interface
to define remote queues, how to execute programs on those remote queues, and act as an
interface for event logging/current job status on all remote systems to which MoleQueue
has submitted jobs. Figure 21 shows the program configuration dialog; those familiar with
PBS submission scripts should recognize the parameters. A simple keyword substitution is
used to replace keywords specified in the template with job-specific settings. This file will
be constructed upon job submission and uploaded to the remote system. It will submitted

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 34

Topic A10-110 Proposal A2-4714 Kitware, Inc.

to the batch scheduler, typically using the qsub command or its equivalent. Queue/program
settings can be imported and exported, facilitating the easy set up of queues across sites if
system administrators distribute relevant files with their submission criteria.

Figure 21: The program configuration dialog in MoleQueue.

In order to be useful on as many high performance computing resources as possible, it was
necessary to implement several secure transport methods. The first of which is SSH (secure
shell) which is an industry standard employed by many of the world’s largest supercomputers
to provide access to computational resources. The MoleQueue application can call a specified
SSH command line client, or make use of the libssh2 library. The main reason for providing
support for both is the lack of Kerberos support in libssh2 and the custom patches applied
by some sites to SSH clients in order to support different challenge-response authentication
techniques. Once a transport has been chosen to support authentication, command dispatch
and file transfer, it is then necessary to support the batch scheduling systems in use on the
HPC resource—primarily Sun Grid Engine, PBS, and SLURM.

Support for SSH with major batch scheduling systems enables MoleQueue to support a
large range of supercomputers and cloud resources (including Amazon’s EC2 when used with
StarCluster to deploy a Sun Grid Engine cluster on demand). The MoleQueue backends are
abstracted in such a way to allow for many compute resource backends to be added. In order
to take advantage of the HPC resources provided to ERDC researchers, integration with the
ezHPC platform was also necessary. This has been accomplished using two approaches, the
first being the more generic SSH transport coupled with PBS, and the second being the use
of the UIT SOAP-like API provided for automated use of HPC resources over an HTTPS
transport.

Unfortunately the UIT documentation does not provide enough detail in some instances,
and is incorrect in a few places. Only parts of the HPC access have been modeled in

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 35

Topic A10-110 Proposal A2-4714 Kitware, Inc.

SOAP, and so it is necessary to manually parse many of the responses and match them
to the raw PBS response and error codes. Kitware developers have spent significant time
using a combination of traditional SOAP implementations, following documentation, trial-
and-error, and direct communication with ezHPC UIT support staff in order to provide a
working implementation. We have reported several issue/bugs to the UIT support address,
and will continue to work with them to resolve these issues. At this stage, the vast majority
of the core functionality is implemented, but there are error conditions and event sequences
where the API tokens and data flow remain unclear. Due to the MoleQueue abstraction, it
is possible to use a UIT queue or a direct SSH/PBS queue to dispatch, monitor, and retrieve
results.

2.9 VTK

The Visualization Toolkit (VTK) is a large, open source, cross-platform toolkit for data
processing and visualization. It has many specialized classes for data processing, informatics,
mathematics, data handling, computational fluid dynamics, geospatial visualization, medical
imaging, charting, volume rendering, and other areas. One area that has not been added to
VTK until now was support for chemical data structures and visualization. Many projects
have used VTK for molecular rendering and visualization, but have had to extend it in their
own applications and have not been able to benefit from built-in support.

VTK has been extended with a dedicated chemistry module that provides hardware-
accelerated visualization making use of advanced support for glyphs in order to get maxi-
mum performance. Support for standard atom color schemes and the standard molecular
representations have been added. The readers have been augmented to read in secondary
protein structure and use the ribbon rendering representations expected for larger biological
structures. Additional file format support has been added, along with optimizations for
larger structures and interaction.

This means that applications using VTK can benefit from built-in support for chemical
structure visualization, along with all the other visualization techniques and data processing
code present in the library. The 2D visualization techniques have also been extended in
order to better support applications in chemistry, such as custom tooltip support (enabling
2D structures to be displayed in tooltips) and support for multidimensional visualization and
selection. Various additional chart types and support for seamless 2D-to-3D chart transitions
offer more immersive visualization and analysis environments in Open Chemistry applica-
tions. The client-server applications using VTK, such as ParaView and ParaViewWeb, can
also benefit from this new functionality and be leveraged in chemical applications.

3 Conclusions

The project has achieved all core goals, and has prompted several new collaborations that are
resulting in wider impacts in the chemistry community. The three Open Chemistry appli-
cations (MongoChem, MoleQueue, and Avogadro 2) are available in both source and binary
form for all major platforms. The JSON-RPC 2.0 inter-process communication APIs and
common data structures have been developed to facilitate seamless communication between

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 36

Topic A10-110 Proposal A2-4714 Kitware, Inc.

the loosely coupled components.
The Avogadro 2 libraries and application have been demonstrated on small molecules

involving expensive quantum calculations through to large molecular dynamics simulations
containing over 2.8 million atoms. The MongoChem application also saw similar success, be-
ing useful for analyzing small molecule collections through to some of the largest available—
the Harvard Clean Energy project with millions of unique molecules and hundreds of millions
of quantum calculations.

The MoleQueue project gained some additional funding from an ERDC PETTT project
for use in another application domain, and several National Labs have expressed an interest
in integrating MoleQueue in their applications, including a climate modeling project demo.
This interest has led to successful integration with several supercomputers and schedulers (in
addition to UIT/ezHPC, Sun Grid Engine and PBS as part of this project). Collaborations
with EMSL’s NWChem project and Harvard’s clean energy project have provided multiple
viewpoints on current opportunities in the area for powerful desktop applications in prepar-
ing input, integrating with HPC resources and applying cheminformatics techniques to the
indexing and analysis of large numbers of quantum calculations/small molecules. Collab-
orations with the Peter Tieleman group, and discussions with researchers based at Sandia
and Los Alamos National Laboratories have offered a view of work taking place in large
molecular dynamics simulations containing millions of atoms.

The projects have gained a significant feature set, and offer unique capabilities. Some
initial funding has been obtained to explore multiscale modeling approaches, using the results
of this project as one of the major foundations. Other nascent collaborations are exploring
areas as diverse as heavy element compound calculations, large-scale materials simulations,
biological system and drug delivery systems. We remain committed to the approach taken,
and will continue to develop the project. All projects were successfully migrated to Qt 5
recently, ensuring their viability in the coming years. The software libraries, applications
and patterns developed position Kitware well to become a major force in this and related
areas.

References

[1] Qt. Online (June 2010). http://qt.nokia.com/.

[2] Cmake. Online (June 2010). http://www.cmake.org/.

[3] Mastering CMake. Kitware, Inc., 5th edition (2010).

[4] Vtk. Online (June 2010). http://www.vtk.org/.

[5] Schroeder, W., Martin, K. and Lorensen, B. An Object Oriented Approach to 3D Graph-
ics. Kitware, Inc., 4th edition (2004).

[6] The VTK User’s Guide. Kitware, Inc., 11th edition (2010).

[7] Open babel. Online (June 2010). http://www.openbabel.org/.

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 37

Topic A10-110 Proposal A2-4714 Kitware, Inc.

[8] OBoyle, N., Banck, M., James, C., Morley, C., Vandermeersch, T. and Hutchison, G.
Journal of Cheminformatics, 3, (2011) 1–14. ISSN 1758-2946. http://dx.doi.org/

10.1186/1758-2946-3-33.

[9] Rdkit. Online (June 2010). http://www.rdkit.org/.

[10] Open chemistry. Online (November 2012). http://www.openchemistry.org/.

[11] Code review, topic branches and vtk. Online (April 2012). http://www.kitware.com/
source/home/post/62.

[12] Gerrit. Online (November 2012). http://code.google.com/p/gerrit/.

[13] Cdash@home. Online (October 2010). http://www.kitware.com/source/home/post/
21.

[14] Json specification. Online (November 2012). http://www.json.org/.

[15] Mongodb. Online (November 2012). http://www.mongodb.org/.

[16] Bson specification. Online (November 2012). http://bsonspec.org/.

[17] Murray-Rust, P. and Rzepa, H. S. Chemistry Intl., 4(24), (2002) 9–13.

[18] Avogadro. Online (June 2010). http://avogadro.openmolecules.net/.

[19] Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E. and Hutchi-
son, G. R. Journal of Cheminformatics, 4(1), (2012) 17.

[20] The clean energy project. Online (November 2012). http://cleanenergy.harvard.

edu/.

[21] World community grid. Online (November 2012). http://www.worldcommunitygrid.

org/.

Distribution Statement A: Distribution is approved for public release; distribution is unlimited. 38

	SF298_Draft
	A10-110-PhaseII-Year2-Report
	Technical Objectives
	Work Summary
	Software Process and Project Dissemination
	Software Repositories and Statistics
	Data Models and Communication Strategies
	Avogadro 1.x
	Avogadro 2 Libraries
	Core and IO Libraries
	Molecule Classes
	Periodic Structures
	Rendering and Graphical Libraries
	Client-Server and Interprocess Communication
	Input Generators in Separate Processes
	File Format Extensions in a Separate Process
	OpenQube—Moved into Avogadro Libraries
	Mouse Interaction Tools
	Scene Plugins
	Extension Plugins
	VTK Integration

	Avogadro 2 Application
	MongoChem
	MoleQueue
	VTK

	Conclusions
	References

